PART - III
 QUANTITATIVE APTITUDE

101. If the sum of five consecutive integers is S, then the largest of those integers in terms of S is
(A) $\frac{\mathrm{S}-10}{5}$
(B) $\frac{\mathrm{S}+4}{4}$
(C) $\frac{\mathrm{S}+5}{4}$
(D) $\frac{\mathrm{S}+10}{5}$
102. The greatest among the numbers $3 \sqrt{2}$, $3 \sqrt{7}, 6 \sqrt{5}, 2 \sqrt{20}$ is
(A) $3 \sqrt{2}$
(B) $3 \sqrt{7}$
(C) $6 \sqrt{5}$
(D) $2 \sqrt{20}$
103. The denominator of a fraction is 3 more than its numerator. If the numerator is increased by 7 and the denominator is decreased by 2 , we obtain 2 . The sum of numerator and denominator of the fraction is
(A) 5
(B) 13
(C) 17
(D) 19
104. 47 is added to the product of 71 and an unknown number. The new number is divisible by 7 giving the quotient 98 . The unknown number is a multiple of
(A) 2
(B) 5
(C) 7
(D) 3
105. The least number which when divided by $16,18,20$ and 25 leaves 4 as remainder in each case but when divided by 7 leaves no remainder is
(A) 17004
(B) 18000
(C) 18002
(D) 18004
106. If the measure of each interior angle of a regular polygon be 144°, the number of sides of the polygon is
(A) 10
(B) 20
(C) 24
(D) 36
107. The base of a right prism is an equilateral triangle of area $173 \mathrm{~cm}^{2}$ and the volume of the prism is $10380 \mathrm{~cm}^{3}$. The area of the lateral surface of the prism is (use $\sqrt{3}=1.73$)
(A) $1200 \mathrm{~cm}^{2}$
(B) $2400 \mathrm{~cm}^{2}$
(C) $3600 \mathrm{~cm}^{2}$
(D) $4380 \mathrm{~cm}^{2}$
108. If a right circular cone is separated into solids of volumes $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ by two planes parallel to the base, which also trisect the altitude, then $\mathrm{V}_{1}: \mathrm{V}_{2}: \mathrm{V}_{3}$ is
(A) $1: 2: 3$
(B) $1: 4: 6$
(C) $1: 6: 9$
(D) $1: 7: 19$
109. The ratio of the volume of a cube and of a solid sphere is $363: 49$. The ratio of an edge of the cube and the radius of the sphere is (taking $\pi=\frac{22}{7}$)
(A) $7: 11$
(B) $22: 7$
(C) $11: 7$
(D) $7: 22$
110. The ratio of the areas of a regular hexagon and an equilateral triangle having same perimeter is
(A) $2: 3$
(B) $6: 1$
(C) $3: 2$
(D) $1: 6$
